

<u>US LHC Accelerator Research Program</u> *brookhaven - fermilab - berkeley*

Beam Commissioning and Fundamental Accelerator Physics

Beam Commissioning

Why? How? When? What is a "system"?

Fundamental Accelerator Physics

Beam-Beam interaction

Electron cloud & other vacuum effects

Remote operations & maintenance

LHC upgrade optics

Interaction Region compensation

Energy deposition & Beam loss scenarios

DoE Review, June 10, 2003 S.Peggs

Beam Commissioning Why?

Why should LARP Accelerator and Instrumentation Physicists be involved in LHC Beam Commissioning?

- to speed up the commissioning of this difficult machine by applying unique (and non-unique) US expertise
- to take the rare opportunity for US physicists to "learn from the school of hard knocks"
- to benefit US hadron machines, present and future

Beam Commissioning

How?

CERN is receptive: the consensus with Bailey, Collier, and Myers is to support 1 scientist per commissioning shift

- ideally: 12 FTEs- guideline budget: 9.5 FTEs

Staff these shifts with a combination of visits:

- long (up to a year)
- relatively brief (as short as a month)

"Breadth and depth": the very best semi-junior physicists, as well as more senior experienced physicists.

DoE Review, June 10, 2003 S.Peggs

Beam Commissioning When?

Still must work out in detail how this will be done:

- integration with the CERN teams must begin well before first beam (injection test)
- compare with detector groups planning for remote groups to have system responsibilities

Beam Commissioning:

What is a "system"?

LARP Beam Commissioners must have specific responsibilities:

- "System Commissioners" (integrators) in RHIC parlance
- "Mr. X" in LEP operations parlance

Initial instruments are natural examples of a "system"

- a LARP Beam Commissioner may be an Instrumentation Physicist or an Accelerator Physicist
- but he/she pulls shifts, as a peer, in the Control Room
- instrument or not, the goal is "end-to-end" responsibility

Where are the boundaries of responsibility? Low/high level controls? Need more discussions with CERN ...

DoE Review, June 10, 2003 S.Peggs

Fundamental accelerator R&D Topics

Beam-Beam Interaction

- RHIC: strong-strong, Tevatron: Electron Lens, LBL: sims Electron cloud and other vacuum effects
- RHIC & the Tevatron as cryogenic test beds. Synch light. Remote operations & maintenance
 - work with REAP, GRID, and MVL efforts

LHC upgrade optics

- synergy with magnet program

Interaction Region compensation

- before & after upgrade

Energy deposition and beam loss scenarios

- before & after upgrade

DoE Review, June 10, 2003 S.Peggs

Beam-Beam Interaction

Strong-Strong experiment & simulation (RHIC)

Data: Fischer et al (BNL). Simulation: M. Vogt et al., DESY

RHIC is first hadron collider to see strongstrong modes!

Experiment:

- single p bunch/ring
- $-\xi = 0.003$

-Observation:

- $\pi_{\rm v}$ -mode shift: 0.004
- expectation:

$$1.21 \cdot \xi = 0.0036$$

[Yokoya, Meller, Siemann]

7

Beam-BeamSimulated influence of wobbling

Luminosity per collision versus time during the circular sweeping process in the luminosity monitoring scheme being developed at LBNL for the LHC

Emittance growth in a strongstrong beam-beam simulation. Green head-on BB collisions Red with 0.1 sigma wobbling

Beam-Beam

Lifetime vs tunes with Tevatron Electron Lens

Data: V. Shiltsev, FNAL

TEL tune shift of 0.004

Status report: new Gaussian profile gun is much more promising ...

DoE Review, June 10, 2003 S.Peggs 9

Beam-Beam

Anti-proton emittance growth rates

Data: V. Shiltsev, FNAL

Some evidence of reduced emittance growth rates with TEL on

Electron cloud and other vacuum effects

Data: Zhang, Fischer et al, BNL

RHIC suffers, but not the Tevatron

Destructive RHIC pressure rise in warm sections in both rings

DoE Review, June 10, 2003 S.Peggs

Electron cloud and other vacuum effectsRHIC

Sometimes the problem is electron cloud ...

In these data

- pressure rise coincides with signal from electron detectors
- solenoid around electron detector (4 m/34 m) reduces signal

Electron cloud and other vacuum effectsRHIC

Sometimes the problem appears to be related to ION beam losses ...

There is little other world experience at these energies

DoE Review, June 10, 2003 S.Peggs 13

Remote Operations and Maintenance

The relevance is clear, although the technology is still in rapid motion

- CMS Virtual Control Room
- GRID, MVL

- symmetric synchronous
- symmetric sequential
- asymmetric

"Don't duplicate the entire control room, just enough identical displays, plus presence"

Remote Operations and Maintenance

Global LHC Data GRID

Experiment (e.g., CMS)

DoE Review, June 10, 2003 S.Peggs

Remote Operations and Maintenance ESGARD MVL

Our goals are strikingly similar to those of the European ESGARD "Multipurpose Virtual Laboratory" (MVL) proposal:

- create a versatile set up, easy to transport and install
- naturalistic video and audio technology
- accelerator controls, access to stored data, e-logs

MVL institutions:

DESY, Daresbury, Elletra, GSI, INFN Milan, Saclay,
 U. Rome, U. Valencia, + non-Europeans expressing informal interest

If successful, ESGARD could have a very interesting prototype implementation in 2 or 3 years?

LHC upgrade optics

In principle there are many upgrade possibilities on the table ...

Table 2: Beam parameters for different LHC upgrade

Scenario		E	Ib	nb	σ_{z}	Luminosity
Ref.	Remarks	[TeV]	[mA]	[-]	[mm]	[cm-2.s-1]
A	Nominal	7	0.20	2808	77	1.00E+34
A'	Ultimate	7	0.30	2808	77	2.31E+34
A"	Modest upgrade	7	0.30	2808	38.5	4.63E+34
Bbb	With bunched beam	7	0.30	5616	38.5	9.25E+34
Bsb	With super-bunch	7	1029	1	75000	9.40E+34
B'	Strong bunches	7	0.48	2808	77	8.70E+34
Cbb	With bunched beam	14	0.14	2808	54.4	1.00E+34
Csb	With super-bunch	14	75.6	1	8250	1.00E+34
Dbb	With bunched beam	14	0.23	5616	54.4	1.00E+35
Dsb	With super-bunch	14	720	1	75000	1.00E+35

... but in practice only IR upgrades are "this side of the horizon"

DoE Review, June 10, 2003 S.Peggs 17

Interaction Region compensation

RHIC -> LHC -> Upgrade

ssex

soct

oct3

dod3

oct2

dec2

dod2

bump across IR

sextupole correction

bump across triplet

octupole correction

DoE Review, June 10, 2003 S.Peggs

Interaction Region compensation

RHIC - tune versus bump amplitude

Data: Pilat et al, BNL

Before IR8 sextupole correction

and after

dcor

dec2

dod2

ssex

sdod

oct3

dod3

Relies on automated PLL tune measurements with 1e-5 resolution

Energy deposition & beam loss scenarios

The large stored energy (350 MJ) in the LHC beam will provide many operational problems

- analysis of energy deposition effects is ongoing
- strong technical expertise at Fermilab
- IR magnet heat load problem gets worse in an upgrade

Gradual beam loss from intended buckets into abort gap

- can cause quenching during beam dump/abort
- is not well understood (cf Tevatron)
- is amenable to study with Longitudinal Density Monitors

DoE Review, June 10, 2003 S.Peggs 2

Energy deposition

D1 in a "dipoles first" upgrade scenario

MARS data: Mokhov et al, FNAL

Will the first beam splitting dipole survive? 3.5 kW per magnet?

Summary

LARP Beam Commissioning

- deliver more luminosity, sooner, to US Experimentalists
- "learn from the school of hard knocks" for present & future
- ideal control room presence 12 FTEs, guideline allows 9.5 FTEs
- integration with CERN teams must begin early

Beam Commissioners will have system responsibilities

- eg "end-to-end" integration of initial 3 instruments
- control room shifts by Accelerator & Instrumentation Physicists
- where are the boundaries, etc? More discussion w CERN needed

Fundamental Accelerator Physics (many details)

- level of effort activity, using/developing unique US capabilities
- smooth flow from LHC nominal to LHC upgrade topics
- natural synergy with Instrumentation activities

DoE Review, June 10, 2003 S.Peggs 23